Orissa Journal of Physics	© Orissa Physical Society	Vol. 23, No.2
ISSN 0974-8202		August 2016
		pp. 147-152

Theoretical Study of Impurity Effect on Anti-Ferromagnetic (AFM) order in Graphene-on-Substrate

H S GOUDA¹, S SAHU¹ and G C ROUT²

¹Nanosensor Lab, School of Applied Sciences, KIIT University, Bhubaneswar, Odisha, India

²Condensed Matter Physics Group ,Physics Enclave, Plot No.- 664/4825, Lane -4A, Shree Vihar, C. S. Pur, PO- Patia, Bhubaneswar- 751031, Odisha, India, Email : gcr@iopb.res.in

Received: 2.6.2016; Revised: 3.7.2016; Accepted: 1.8.2016

Abstract. We report here a tight binding study of the effect of impurity concentration on anti-ferromagnetic (AFM) order in graphene-on-substrate. The onsite Coulomb interactions at two sub-lattices of graphene are treated within mean-field approximation and the electron occupancies at two sub-lattices include spin moments in opposite directions giving rise to antiferromagnetism in graphene. The sub-lattice magnetizations are calculated by Green's function method and are solved self-consistently for different impurity concentrations.

Keywords. Graphene, anti-ferromagnetism, impurity concentration. PACS No- 71.10.Fd, 75.10.Lp, 75.30.Ds

1. Introduction

The magnetic ordering in graphene has potential applications in spintronic applications [1]. It is found that the spins of same sib-lattices are ordered ferromagnetically and spins of different sub-lattices are ordered anti-ferromagnetically. Magnetic ordering of graphene in general is governed by Lieb's theorem [2]. It states that the ground state spin of a bipartite lattice with repulsive electron-electron interaction as described Hubbard model equals half of the difference of electron occupancies. The substrate induced gap leads to difference in spins at different sub-lattices. A recent tight-binding calculation predicts the occurrence of ferromagnetism (FM) and anti-ferromagnetism (AFM) in the graphene [3]. The repulsive electron-electron interaction in the bipartite

H S Gouda et al.

lattice of graphene will produce imbalances in sub-lattice atoms leading to spin polarization of the ground state of the system. In theory, magnetic ordering has been demonstrated in nano ribbons and vacancies in bulk graphene [4]. Monte-Carlo calculations of Sorella et al [5] have shown that the Hubbard model in half filled honey-comb lattice would exhibit a Mott-Hubbard transition at a finite U.

2. Formalism and calculations Greens Function

In order to investigate the AFM order present in the monolayer graphene, The tight- binding model of Hamiltonian is proposed as

$$H_{TB} = H_0 + H_1 + H_2 + H_3 + H_s + H_I + H_U$$
(1)

$$H_{0} = \sum_{i,\sigma} \epsilon_{a} a^{\dagger}_{i,\sigma} a_{i,\sigma} + \sum_{j,\sigma} \epsilon_{b} b^{\dagger}_{j,\sigma} b_{j,\sigma}$$
(2)

$$H_1 = -t_1 \sum_{\langle i,j,\sigma \rangle} (\gamma_1(k) \ a_{i,\sigma}^{\dagger} b_{j,\sigma} + \gamma_1^*(k) \ b_{j,\sigma}^{\dagger} \ a_{i,\sigma})$$
(3)

$$H_{2} = -t_{2} \sum_{\langle\langle i,j,\sigma\rangle\rangle\rangle} \gamma_{2}(k) \left[a_{i,\sigma}^{\dagger} a_{j,\sigma} + b_{j,\sigma}^{\dagger} b_{i,\sigma} \right]$$
(4)

$$H_{3} = -t_{3} \sum_{<<>>} (\gamma_{3}(k) \ a^{\dagger}_{i,\sigma} b_{j,\sigma} + \gamma^{*}_{3}(k) \ b^{\dagger}_{j,\sigma} \ a_{i,\sigma} \)$$
(5)

$$H_{s} = \Delta \sum_{i,j,\sigma} (a_{i,\sigma}^{\dagger} a_{i,\sigma} - b_{j,\sigma}^{\dagger} b_{j,\sigma})$$
(6)

$$H_{I} = V_{0} \sum_{i,j,\sigma} (x_{a} a^{\dagger}_{i,\sigma} a_{i,\sigma} + x_{b} b^{\dagger}_{j,\sigma} b_{j,\sigma})$$
(7)

where $a_{k,\sigma}^{\dagger}(a_{k,\sigma})$ and $b_{k,\sigma}^{\dagger}(b_{k,\sigma})$ are the creation (annihilation) operators with spins ($\sigma = \uparrow, \downarrow$) on sub-lattices A and B respectively. H₀ represents the Hamiltonian for onsite energies with ϵ_a and ϵ_b as the site energies at A and B sub-lattices. Since graphene is placed on substrate, the Hamiltonian for the substrate is given by equation (6) and the site energies ϵ_a and ϵ_b at A and B sites are modified by energy, $\epsilon_a + \Delta$ and $\epsilon_b - \Delta$ due to substrate induced gap Δ . H_I represents the impurity interaction in the pristine graphene with impurities x_a and x_b at A and B sites with impurity potential (V_0). Further H₁, H₂ and H₃ represent first, second, third nearest-neighbor electron hopping interactions with energy dispersions $\epsilon_{1k} = -t_1 |\gamma_1(k)|, \epsilon_{2k} = -t_2 |\gamma_2(k)|$ and $\epsilon_{3k} = -t_3 |\gamma_3(k)|$, where

148 Orissa Journal of Physics, Vol. 23, No.2, August 2016

Theoretical study of impurity effect on

 t_1, t_2, t_3 represent the respective hopping integrals. The repulsive Coulomb interactions at both the sub-lattices are given by

$$H_U = \frac{U}{2} \sum_{i,\sigma} \left(n^a_{i,\sigma} n^a_{i,-\sigma} + n^b_{i,\sigma} n^b_{i,-\sigma} \right)$$
(8)

here $n_{i,\sigma}^{\beta}$ represents electron occupation number at two sub-lattices i.e. $\beta = A, B$ with repulsive Coulomb energy *U*.

3. Calculation of Green's functions and AFM magnetization

The Hamiltonian H_U is considered within Hartree-Fock mean-field approximation where the average electron occupancies at A and B sub-lattices are written as $\langle n_{i,\sigma}^a \rangle = \left(\frac{n}{2} + \frac{\sigma ma}{2}\right)$ and $\left(\langle n_{i,\sigma}^b \rangle = \frac{n}{2} - \frac{\sigma mb}{2}\right)$ indicating that A and B site magnetic moments are oppositely oriented for anti-ferromagnetism and n represents the total electron occupancy. The total Hamiltonian H_{TB} in equation (1) is solved by Zubarev' s Green's function technique [6]. The A site and B site electron occupancies are calculated from the correlation functions derived from the Green's functions. The A site and B-site magnetization are calculated from the given relations. Finally m_a and m_b are computed self- consistently.

$$m_a = \sum_k [\langle a_{k,\uparrow}^{\dagger} a_{k,\uparrow} \rangle - \langle a_{k,\downarrow}^{\dagger} a_{k,\downarrow} \rangle], m_b = \sum_k [\langle b_{k,\uparrow}^{\dagger} b_{k,\uparrow} \rangle - \langle b_{k,\downarrow}^{\dagger} b_{k,\downarrow} \rangle]$$

4. Results and Discussion

All the physical parameters are scaled by first-nearest-neighbor hopping integral ($t_1 = 2.78 \text{ eV}$). The temperature appears as $t = \frac{k_B T}{t_1}$ in unit less form. The scaled quantities are $\tilde{t}_1 = -1$, $\tilde{t}_2 = \frac{t_2}{t_1}$, $\tilde{t}_3 = \frac{t_3}{t_1}$, attractive impurity energy $v = \frac{V_0}{t_1}$, repulsive Coulomb energy $u = \frac{U}{t_1}$, substrate induced gap $d_1 = \frac{\Delta}{t_1}$, energy at A-site ea $= \frac{\epsilon_a}{t_1}$, energy at B-site eb $= \frac{\epsilon_b}{t_1}$ and chemical potential um $= \frac{\mu}{t_1}$. The temperature dependent magnetizations(m_a, m_b) are shown in figures 1-2 for different concentrations (x_a and x_b) to A and B sub-lattices.

149

H S Gouda et al.

Fig. 1. The plot of magnetizations (m_a, m_b) vs. temperature (t) for fixed Coulomb potential u = 3.3, impurity potentials v = -4.5 and $x_a = 0.01, 0.02, 0.03$ and $x_b = 0$ at substrate induced gap $d_1 = 0.090$ and band filling n = 0.75.

Figure.1 shows the effect of impurities ($x_a = 0.01, 0.02, 0.03$) at A-site on magnetization m_a . For given impurity concentration, the magnetization is suppressed at low temperature and they exhibit mean-field behavior at higher temperature. A-site magnetization (m_a) becomes higher than that of B-site magnetization (m_b) with corresponding Neel temperature $t_A = 0.86$ and $t_B = 0.76$. With increase of A-site impurity concentration, the A-site magnetization is suppressed considerably throughout the temperature range. However A-site impurity has no effect on B-site magnetization. It is to note further that sub-lattice magnetizations(m_a, m_b) of graphene-on-substrate are suppressed as at lower temperatures due to the presence of impurities.

Orissa Journal of Physics, Vol. 23, No.2, August 2016

150

Theoretical study of impurity effect on

Fig. 2. The plot of magnetizations (m_a, m_b) vs. temperature (t) for impurity potentials v = -4.5, $x_a = 0$ and $x_b = 0.01, 0.02, 0.03$ for same parameters given in figure 1.

Figure. 2 shows that the effect of impurities $x_b = 0.01, 0.02, 0.03$ at B sublattice on magnetization(m_b). With increase of impurity, the B-site magnetization(m_b) is suppressed appreciably with large suppression of Neel temperature and the magnetization (m_b) vanishes for the impurity $x_b = 0.05$. However the A-site magnetization (m_a) remains unaffected by B-site impurities. On the other hand, the graphene-on-substrate exhibits for the magnetization for impurity $x_b = 0.05$ only due to the magnetization of A-site atoms.

5. Conclusions

We have reported here the impurity effect on AFM sub-lattice magnetizations below the anti-ferromagnetic ordering temperature (Neel temperature). It is observed that A-site magnetization is suppressed by A-site impurity concentration, while B-site magnetization remains unaffected. Similar results are obtained for B-site impurities. In present case, we have considered nitrogen impurity at carbon sites with attractive impurity potential V = -4.5 *

Orissa Journal of Physics, Vol. 23, No.2, August 2016 151

H S Gouda et al.

 $t_1 = -12.51eV$ for fixed band filling n = 0.75 and substrate induced gap $d_1 = 0.090$. Recently, we have reported effect of band filling effect on antiferromagnetically ordered magnetization in graphene [7].

References

- [1] K S Novoselov, A. K Geimet al., Science 306, 666 (2004)
- [2] Elliott H Lieb. Phys. Rev. Lett. 62, 1201 (1989)
- [3] T J Echtermeyer, L Britnell, et al. Nat. Comm, 2, 458(2011)
- [4] L Liu and Z Shen, App. Phys. Lett. 95, 252104 (2009)
- [5] S Sorella and E Tosatti, Europhys. Lett., 19, 699 (1992)
- [6] D N Zubarev, Sov. Phys. Usp., 3, 320 (1960)
- [7] HS Gouda, S Sahu, and G C Rout, Adv. Sc. Lett. (2016) (In Press)